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tions along the ray ~~11 orthogonal to I’ at the point P, for the values of time corre- 
sponding to x’t / a2 = 0.04 (curves 1) and XT I a2 = 0.09 (curves Z), and the values of 

tp equal to o(a),n /4(b) and n/2(c). 

Fig. 1 
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In the theory of motion of charged particles through periodic focussing accele- 
rators the Hill’s equationis often solved using a widely accepted method of 
“smooth approximation”. By this method the solution is represented in the form 
of a “slow” harmonic function with a “rapidly” oscillating amplitude. Below we 

derive a formula for the frequency of the slow component of such a solution, 
expressed in terms of the Fourier harmonics of the equation coefficient. Such a 
formula may find use in practical computations. 

In the smooth approximation [l] which converges to the first approximation of the 

method of averaging r2] the solution of the Hill equation 

5” + p (t)z I= 0, CI (t + 0 f (I (t) (T> 6) (1) 

is sought in the form z (t) = [I + r (t) IX (t), where X (t) represents a slow (compared 
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with r It)) function and r (t) is uniquely determined by the conditions 

r” = - q (t) $ (g> EZ ~ Aq (t) (2) 

(r’) ~-2 0, (r) =- 0 (3) 

Here the symbol < > denotes averaging over the period of the coefficient q (t). The 
function X (11, approximately satisfies the equation 

X” + ($X _ 0 (02 = (q) f (r’2>) (4) 

The smooth approximation is applicable when o 4 2n / T. Let us express 02 by the 
coefficients of the Fourier expansion of P (t) 

q (t) = (q) -I- fJ (an cos T ;- b, si:l ?$!) 
n-1 

(5) 

We assume that the function 4 (t) is bounded, piecewise monotonous and has a finite 

number of discontinuities within a single period. Under these conditions the Fourier 

series (5) converges and can be integrated term by term. Equation (2), with the expan- 
sion (5) and the first equation of (3) taken into account, yields 

m 

r’ = A, cos ?$ + B, sin ‘q) 

‘4 bn 
n=2iiq1 

I?,,-??!_ 
2nn I T 

(6) 

Function r’ (t) is periodic and continuous, therefore it satisfies the Parseval equation 
m 

(r.‘) - (r’>? = + 2 (,‘I,? +- B,‘) 

?%=I 
(8) 

Taking into account the fact that (r’) = 0, we obtain from (7) and (8) 

Computation of o according to the formula (9) may be more convenient than direct 

integrating of (2) with the condition (3) taken into account, in the case when e. g. the 
coefficient q (t) is either defined by different expressions on different segments of the 
period, or when it is given in tabular form. Using the formula (9) we can write the con- 
ditions of simultaneous stability of the solutions of (1) and of the equation 

Z” - 2q (t) 5 = 0 (19) 

in the following manner (the problem relating to the theory of accelerators): 

g;Q+$b,, >{ ;;;I:;;;;,, ;,“;=g 

These conditions show clearly the role that the harmonics play in securing simultaneous 
stability of the solutions of (1) and (10). 
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